Detaildaten zu Beinträchtigungen: Vogelarten

Wiesenweihe - Circus pygargus

Natura 2000-Code: A 084; Bearbeitungstand: III

Wirkfaktorengruppe: 4 Barriere- oder Fallenwirkung / Individuenverlust
Wirkfaktor: 4-3 Betriebsbedingte Barriere- oder Fallenwirkung / Individuenverlust
Relevanz des Wirkfaktors:  regelmäßig relevant (2)

     Auswertekategorien:

  1. Empfindlichkeiten/Wirkungen (7)
  2. Regenerationsfähigkeit (0)
  3. Prognosemethoden (4)
  4. Relevanzschwelle (1)
  5. Erheblichkeitsschwelle (5)

Datensatz:    < zurück     6 - 10 von 17    weiter >

1. Empfindlichkeiten/Wirkungen

1.21 BearbeiterInnen FFH-VP-Info (siehe Impressum) (o. J.)

B: Schienenverkehr

Die Mortalität von Vögeln an Schienenwegen resultiert einerseits aus der Kollision mit den Zügen, andererseits jedoch auch aus der Kollision mit den Oberleitungen sowie aus Stromschlag (anlagebedingte Ursache, s. Wirkfaktor 4-2). Die schreckhafte Flucht beim Herannahen eines Zuges erhöht auch die Gefährdung durch Kollision mit den Oberleitungen.

Bei den Untersuchungen zur Vogelmortalität an Schienenwegen wurden mehr oder weniger aus allen taxonomischen Gruppen und ökologischen Gilden Opfer registriert, so dass davon auszugehen ist, dass grundsätzlich alle Vogelarten potenziell von Verlusten an Schienenwegen betroffen sein können. Allerdings zeichnen sich auch hier in Empfindlichkeit bzw. Gefährdung z. T. artspezifische Unterschiede ab (vgl. z. B. Roll 2004).

Kollisionen mit Zügen ergeben sich zum Teil beim Überflug, zum Teil jedoch auch beim Aufenthalt im Trassenbereich zur Nahrungssuche (z. B. Greifvögel) oder beim Nutzen der Leitungsdrähte als Ansitzwarten. Hier ist bei manchen Arten von einem gewissen Falleneffekt auszugehen.

Vor allem bei durch Wald führenden Trassen scheinen größere Vögel stärker betroffen zu sein, da sie bei plötzlicher Annäherung eines Zuges primär die Schneise der Trasse selbst entlang fliegen. Durch beiderseitige Waldränder und die Oberleitungen der Bahn kann sich quasi ein 'Tunnel' ergeben, den der Vogel zuerst für den Abflug nutzt. Aufgrund der Fahrgeschwindigkeit des Zuges und der Schwierigkeit, ein auf sich zu bewegenden Körper einschätzen zu können, bleiben dem Vogel allenfalls wenige Sekunden zur Flucht. Aasfresser (Seeadler, Mäusebussard) sind abermals stärker betroffen, da sie an von der Bahn angefahrenen Tieren fressen.

Basierend auf einer breiten Literaturauswertung kommt Roll (2004:38f) zu dem Ergebnis, dass trotz einer deutlich geringeren Anzahl an Fahrzeugen verglichen mit Straßen, die Auswirkungen des Zugverkehrs bezogen auf den Streckenkilometer offenbar höher liegen als bei Straßen. Ursachen können der o. g. Falleneffekt durch angefahrene Tiere, die hohe Fahrgeschwindigkeit der Züge und die weitgehende Störungsarmut der Bahntrasse selbst sein.

Differenzierte Ausführungen zur Mortalität von Vögeln an Schienenwegen, eine Zusammenstellung verschiedener Fakten und Beispiele sowie Hinweise für die Planung finden sich z. B. bei:
Spencer (1965), Lösekrug (1982), Havlin (1987b), Baldauf (1988), Hoerschelmann (1992), Pons & Claessens (1993), Pons (1994), SCV (1996), Bauer (2000), Jöhnk (2001), Menz (2003), Roll (2004), Eisenbahnbundesamt (2010).

Bibliographien: Roll (2004).

Qualifizierung der Quelle: E



1.41 BearbeiterInnen FFH-VP-Info (siehe Impressum) (o. J.)

C: Flugverkehr

Der Kollision von Vögeln mit Flugzeugen wird i. d. R. v. a. aufgrund der daraus reduzierten Flugsicherheit Beachtung geschenkt. Kollisionen können beim Flug in größerer Höhe auftreten oder aber räumlich konzentrierter - und besonders kritisch - bei Start und Landung im Bereich der Flughäfen. Dort gibt es in der Regel spezielle Bird Control - Aktivitäten, mit denen durch Management, Vergrämung und zur Not durch Abschuss und Beizjagd das Vogelschlagrisiko für den Flugverkehr reduziert werden soll. Aus Sicht der Flugsicherheit sind v. a. Großvögel (wie z. B. Greifvögel, Gänse, Schwäne, Reiher, Störche, Kormoran) und schwarmbildende Arten (wie z. B. Star, Ringeltaube, Kiebitz, Schwalben, Möwen, Krähen, Drosseln) problematisch und unterliegen daher einem erhöhten Vertreibungsdruck (vgl. z. B. Hämker & Borstel 2003, Morgenroth 2003, Ehring 2004, Weitz 2005).

Auch bei der Mortalität durch Flugverkehr dürfte das gesamte Artenspektrum potenziell betroffen und v. a. durch die vorherrschenden Lebensraumstrukturen geprägt sein. Möglicherweise bestehen artspezifische Unterschiede basierend auf Unterschieden in Flughöhe, Flugverhalten oder störungsbedingtem Meideverhalten der Arten. Grundsätzlich sind nicht nur die Habitate auf dem Flughafen maßgeblich, sondern auch die Lebensraumbedingungen im Umfeld, da auch die regelmäßigen räumlich-funktionalen Beziehungen zwischen Brut-, Nahrungs-, Rast- oder Schlafhabitaten zu einem Problem werden können (vgl. z. B. Morgenroth 2003).

Nach den Richtlinien des BMVBW werden auch die Umgebung des Flughafens in einem Radius von 6 km sowie die Anflugflächen 10 km vor den jeweiligen Schwellen in die Maßnahmen der Vogelschlagverhütung mit einbezogen (Lange & Hild 2003:70). Von der internationalen AGA Working Group wurden 2004 als Wildlife Hazard Management Empfehlungen für internationale Flughäfen erarbeitet, die vorsehen, dass in einem Radius von 8 km um den Flughafenbezugspunkt verschiedene Aktivitäten zur Förderung von Vogelbeständen (z. B. Anlage oder Erweiterung von Wasserflächen, Erweiterung natürlicher Habitate aber auch Anlage von Mülldeponien und Abwasseranlagen) verhindert werden sollten. Aus dem Blickwinkel der Flugsicherheit handelt es sich bei solchen Flächen, die für die Avifauna attraktiv sind, im Umfeld des Flughafens um 'Problembiotope' (vgl. z. B. Lange & Hild 2003, Morgenroth & Sinder 2002), die es möglichst zu vermeiden gilt. Aus Sicht des Naturschutzes können somit Flughäfen auch indirekt weit über das unmittelbare Flughafengelände hinaus großflächig ein erhebliches Konfliktpotenzial mit sich bringen.

Noch relativ unbeachtet sind Todesfälle v. a. von Mäusebussarden und anderen mittelgroßen Vögeln auf dem Flughafengelände selber, die vermutlich durch sogenannte Wirbelschleppen verursacht werden, also Luftverwirbelungen, die bei Starts und Landungen an den Tragflächen größerer Flugzeuge entstehen.

Differenzierte Ausführungen und Statistiken zur Kollision von Vögeln mit Flugzeugen, eine Zusammenstellung verschiedener Fakten und Beispiele sowie Hinweise für Planung und Management finden sich z. B. bei:

Scheller & Küsters (1999), Jackson & Allan (2002), Morgenroth & Sindern (2002), Breuer (2003), Schmundt (2004), Hüppop (2004), Weitz (2005), Breuer (2005), Bruderer & Komenda-Zehnder (2005), Breuer (2006, 2007), Albrecht & Esser (2007), Schillhorn (2010), Kitowski (2011), Morgenroth (2011), Deutsch (2013).

Zeitschriften: Vogel und Luftverkehr (Gesamtinhaltsverzeichnis ab 1986 als PDF unter http://www.davvl.de/de/fachzeitschrift/gesamtinhaltsverzeichnis).

Qualifizierung der Quelle: E


3. Prognosemethoden

3.01 BearbeiterInnen FFH-VP-Info (siehe Impressum) (o. J.)

Bei der Wirkungsprognose sind die qualitativen und quantitativen Betroffenheiten der Art durch betriebsbedingte Mortalität und/oder Barrierewirkungen einzuschätzen. Dabei sind die Wirkintensität des Projekts und seiner Bestandteile und die Empfindlichkeit des betroffenen Raumes sowie der betroffenen Arten zu analysieren (s. nachfolgende Datensätze).

Es sind alle relevanten (Teil-)Habitate sowie die räumlich-funktionalen Beziehungen zwischen Teilhabitaten mit den vom Projekt beanspruchten Flächen zu überlagern. Grundsätzlich ist insbesondere die Betroffenheit der räumlich-funktionalen Beziehungen zwischen den verschiedenen Teilhabitaten einer Art auf Individuums- und/oder Bestandsniveau qualitativ und quantitativ einzuschätzen.

Es sind die quantitativen und qualitativen Funktionsverluste für die betroffenen Individuen bzw. (Teil-) Populationen zu beurteilen. Zudem ist die Beurteilung der vorhandenen Bestandsgrößen und eine Einschätzung der langfristigen Auswirkungen der Mortalität bzw. Barrierewirkungen auf die Bestände im Gebiet vorzunehmen (s. auch unter Erheblichkeit).

Im Einzelfall können auch Flächen außerhalb des Gebietes zu berücksichtigen sein, sofern die betroffenen (Teil-)Habitate eine wesentliche funktionale Bedeutung für die im Gebiet vorkommenden Bestände der Art aufweisen.

Eine Berücksichtigung etwaiger kumulativer Wirkungen additiver oder synergistischer Art durch andere Wirkfaktoren des Projekts/Plans oder im Zusammenwirken mit anderen Projekten/Plänen ist notwendig.

Im Einzelfall können aus Gründen der Prognosesicherheit zur Beurteilung der Mortalität bzw. Barrierewirkung auch weitergehende Methoden notwendig werden (z. B. Populationsgefährdungsanalysen, s. Rassmus et al. 2003, Lambrecht et al. 2004).

Qualifizierung der Quelle: E



3.02 BearbeiterInnen FFH-VP-Info (siehe Impressum) (o. J.)

Standardisierte Prognosemethoden zur Ermittlung der Mortalität von Vögeln bei den verschiedenen Verkehrsträgern konnten bislang nicht ermittelt werden. Nachfolgend sind jedoch die wesentlichen Grundaspekte zur Ermittlung des Mortalitätsrisikos dargestellt. Darüber hinaus finden sich qualifizierte Hinweise z. T. auch in den eingangs genannten Standardwerken.

Bei der Prognose kann zunächst allgemein aus dem Vorkommen von Vögeln auf die potenziellen Vogelverluste geschlossen werden. Bereiche mit hoher Brutvogeldichte oder hohem Vorkommen von Gast- bzw. Zugvögeln sind gegenüber projektbedingter Mortalität problematischer als Bereiche mit geringer Bedeutung für Vögel (z. B. Hoerschelmann 1997, Richarz 2001:124f.).

Ohne Anspruch auf Vollständigkeit werden als allgemein kritische Gebiete z. B. Gewässer, Feuchtgebiete, Niederungen mit hohen Rastbeständen, Wiesenvogellebensräume, Koloniebereiche etc. genannt. Dies gilt auch für Konzentrationspunkte des Vogelzuges (zentrale Zugrouten, wichtige Zugschneisen) z. B. an Gebirgspässen, Küstenabschnitten, Flusstälern etc. und Standorte mit häufigen Wetterlagen, die zu schlechten Sichtverhältnissen führen (vgl. Hoerschelmann 1997, Lösekrug 1997, Richarz 2001:124f.). Für die Beurteilung der Bedeutung bzw. der Funktionen von Flächen für Vögel sind u. a. Landschaftsbeschaffenheit, Biotopeigenschaften, Nahrungsangebot, Brutplatzeignung, Rastgebietsfunktionen etc. zu berücksichtigen.

Natura 2000-Gebieten kommt eine besondere Bedeutung für Arten und Lebensgemeinschaften zu, wozu in der Regel auch Vögel bzw. Avizönosen zu zählen sind. Europäische Schutzgebiete, in denen Vogelarten nach den Erhaltungszielen geschützt sind, weisen somit immer eine besondere Bedeutung und i. d. R. eine besondere Sensibilität aus Sicht des Vogelschutzes auf. Vögel können hierbei als Arten der Vogelschutz-RL in einem Vogelschutzgebiet unmittelbar oder als charakteristische Arten bestimmter Lebensraumtypen in einem FFH-Gebiet mittelbar durch Erhaltungsziele oder den Schutzzweck geschützt sein.

Grundsätzlich ist somit zunächst immer auch die räumliche Entfernung des Projekts zum Schutzgebiet bzw. zu den verschiedenen (Teil-)Habitaten der geschützten Vogelarten zu ermitteln.

Qualifizierung der Quelle: E



3.03 BearbeiterInnen FFH-VP-Info (siehe Impressum) (o. J.)

Belastungsfaktoren von Projekttypen bzw. räumlichen Konstellationen:

Das jeweilige Projekt ist hinsichtlich seiner spezifischen Wirkintensität bzw. seines Risikopotenzials anhand der jeweils relevanten Projektparameter zu beurteilen.

- Bei Straßen und Schienenwegen sind v. a. Verkehrsdichte/Verkehrsaufkommen, Verkehrsgeschwindigkeit, Trassierung, landschaftliche Situation, Lage im Raum und Trassenbegleitvegetation von Bedeutung.

- Bei Schienenwegen kommt noch die Ausgestaltung der Oberleitungen als maßgeblicher Parameter hinzu.

- Bei Flughäfen spielen v. a. die Lage im Raum, Biotoptypen auf dem Flughafengelände, landschaftliche Gegebenheiten im Umfeld und das Flugverkehrsaufkommen eine Rolle (vgl. auch den von Morgenroth 2003 entwickelten Index zur Berechnung der Flugsicherheitsrelevanz von Vogelarten).

Die nachfolgende Kurzcharakterisierung der relevanten Projektparameter basiert auf den Vorarbeiten von Bernotat (1997) bzw. Bernotat & Dierschke (2021):

1. Verkehrsdichte / Verkehrsaufkommen

Zahlreiche Untersuchungen stellen bei Straßen mit höherem Verkehrsaufkommen auch höhere Vogelverluste fest als bei Straßen mit geringem Verkehrsaufkommen (vgl. z. B. Hansen 1969, Oxley et al. 1974, Odzuck 1975, Heinrich 1978).

In der Regel steigt mit zunehmendem Verkehrsaufkommen die Wahrscheinlichkeit einer Kollision offenbar stärker an, als die durch regelmäßigeren Verkehrsfluss ermöglichten Lerneffekte (vgl. dagegen Bergmann 1974:13f.) oder die durch Lärmimmissionen bedingte Verdrängung (vgl. Wirkfaktor 5-2) eine Reduktion der Verlustrate bewirken können.

2. Verkehrsgeschwindigkeit

Viele Autoren weisen darauf hin, dass auch die Verkehrsgeschwindigkeit die Rate der Verkehrsopfer unter Vögeln beeinflusst (vgl. z. B. Martens 1962:221, Wäscher et al. 1988:51, Hammerich 1993:125ff., Roll 2004, Canal et al. 2019). Sehr schnell fahrende Fahrzeuge können von Vögeln offensichtlich nicht rechtzeitig wahrgenommen bzw. nicht richtig eingeschätzt werden, so dass es vermehrt zu Kollisionen kommt. Unklar ist derzeit noch, nach welcher Funktion die Gefährdung mit der Geschwindigkeit zunimmt und ob es gewisse Schwellenwerte gibt, ab denen stark vermehrte Verluste auftreten.

Wäscher et al. (1988:51) stellen eine deutliche Erhöhung der Verkehrsverluste bei Geschwindigkeiten über 40 km/h fest. Löhrl (1950:133) kommt zu dem Ergebnis, dass Goldammern bei Fahrzeuggeschwindigkeiten von 40-50 km/h oft noch entkommen können. Als Schwellenwert, ab dem die Gefahr für Vögel, von Autos erfasst zu werden, stark ansteigt, nennt Hodson (1960:224ff.) 55 km/h und Hammerich (1993:127) 50-60 km/h.

Roos (1978, zit. In Hammerich 1993:126) geht davon aus, dass die meisten Unfälle mit Vögeln bei einer Geschwindigkeit von 70-80 km/h passieren. Illner (1992b:94) kommt bei Untersuchungen an Eulen zu dem statistisch signifikanten Ergebnis, dass der kritische Wert für Schleiereule, Waldohreule und Waldkauz bei ca. 80 km/h, beim Steinkauz bei ca. 60 km/h liegt, da bei diesen Geschwindigkeiten bezogen auf einen Kilometer Straße um ein Vielfaches (21 mal) mehr Eulen getötet wurden als bei Straßen mit geringeren Geschwindigkeiten.

3. Trassierung

Die Gestaltung des Trassenprofils hat ebenfalls einen Einfluss auf die Verkehrsverluste. Bei höhengleicher Trassenführung und insbesondere bei Dammlage ereignen sich aufgrund der ungünstigeren, da niedrigeren, Überfluglinie mehr Kollisionen als bei Trassen, die im Einschnitt verlaufen (vgl. z. B. Löhrl 1950:135, Wäscher et al. 1988:47f., Institut für Naturschutz und Tierökologie 1977:103). Bereiche mit trassenbegleitenden Erdwällen oder Lärm¬schutz¬wänden weisen bezogen auf überfliegende Arten eine verringerte Unfallrate auf (Wäscher et al. 1988:48).

4. Landschaftliche Situation

Ein wesentlicher Faktor ist die an die Trasse angrenzende Gelände- und Vegetationsstruktur. Verschiedene Untersuchungen weisen darauf hin, dass die Zahl der Verkehrsopfer unter Vögeln bei reich gegliederten Landschaften mit höheren Siedlungsdichten und bei geeigneten Brut- und Nahrungshabitaten im unmittelbaren Trassenrandbereich deutlich erhöht ist (z. B. Smettan 1988:43, Hammerich 1993:135ff., Steiof 1996:530, Morgenroth 2003).

5. Lage im Raum

Hinsichtlich der Lage im Raum und der Ausrichtung sind v. a. Anordnungen quer zu den (Haupt-)Flugbewegungen problematisch. Dazu können z. B. auch lineare Strukturen (wie Hecken, Säume, Waldschneisen, Gräben oder Bäche) oder Lebensraumgrenzen (z. B. Waldrand, Ufer) zählen, da sich Vögel in ihrem Flug- bzw. Wanderverhalten häufig an solchen 'Leitstrukturen' orientieren (z. B. Löhrl 1950:135, Reck & Kaule 1992:88, Hammerich 1993:136). Grundsätzlich kann es auch von Bedeutung sein, welchen relativen Anteil eine Trasse (z. B. Brücke) am Flugraum / -korridor (z. B. Talraum) einnimmt, da hierdurch die Möglichkeiten des seitlichen Ausweichens der Vögel mit beeinflusst werden können.

6. Trassenbegleitvegetation

Die Wirkungen von Trassebegleitgrün auf die Verkehrsopferrate von Vögeln sind sehr vielfältig. Einerseits weist eine strukturreiche Trassenbegleitvegetation höhere Siedlungsdichten und somit auch höhere Verkehrsverluste auf (vgl. z. B. Wäscher et al. 1988:53, Steiof 1996:530ff., Menz 2003), es liegt ein typischer Falleneffekt vor. Andererseits schützt ein deutlich strukturierter Horizontüberstand der straßenbegleitenden Gehölze offensichtlich Vögel vor dem Verkehrstod, indem die Überflughöhe gesteigert wird (Bay & Rodi 1990:93f., Menz 2003).

7. Gestaltung der Oberleitungen bei Schienenwegen

Die Oberleitungen an Bahnanlagen stellen einen maßgeblichen zusätzlichen Gefährdungsfaktor dar, der bei der Wirkungsprognose entsprechend zu berücksichtigen ist. Nähere Informationen hierzu finden sich unter den eingangs genannten Publikationen und unter dem Thema Freileitungen im Kontext anlagebedingter Mortalität (Wirkfaktor 4-2).

Qualifizierung der Quelle: E



Datensatz:    < zurück     6 - 10 von 17    weiter >

Reports: aktueller Wirkfaktor   aktuelle Wirkfaktorengruppe   alle Wirkfaktoren
 

Qualifizierung der Quellen für Vogelarten

Averallgemeinerbarer, in der Literatur dokumentierter Nachweis für diese spezielle Art
Bin der Literatur dokumentierter Nachweis für diese spezielle Art, aber möglicherweise Ausnahmefall
Cin der Literatur dokumentierter Nachweis für verwandte Arten bzw. andere Arten dieser Artengruppe, der als übertragbar eingestuft wird
Din der Literatur dokumentierter Hinweis für diese spezielle Art oder verwandte Arten bzw. andere Arten dieser Artengruppe
Eeigene Einschätzung oder Aussage Dritter, ohne in der Literatur dokumentierten Nachweis/Hinweis (Experteneinschätzung)
Fkeine Literatur verfügbar / Auswertung bzw. Einschätzung mit aktuellem Bearbeitungsstand noch nicht erfolgt

Legende: Bearbeitungsstand zum Bereich "Beeinträchtigungen"

-bislang noch nicht bearbeitet
Iderzeit nur Einschätzungen zur Relevanz der Wirkfaktoren vorhanden
IIzudem Detaildaten zur Auswertekategorie "1. Empfindlichkeiten/Wirkungen" vorhanden
IIIzudem Detaildaten zu den weiteren Auswertekategorien "2. bis 5." vorhanden
ihre meinung

Wenn Sie uns Hinweise auf weitere wissenschaftliche Quellen oder Anregungen zu FFH-VP-Info geben wollen, schreiben Sie eine kurze Notiz an:
dirk.bernotat@bfn.de