Detaildaten zu Beinträchtigungen: Vogelarten
Sperlingskauz - Glaucidium passerinum
Natura 2000-Code: A 217; Bearbeitungstand: IIIWirkfaktorengruppe: | 4 Barriere- oder Fallenwirkung / Individuenverlust |
Wirkfaktor: | 4-2 Anlagebedingte Barriere- oder Fallenwirkung / Individuenverlust |
Relevanz des Wirkfaktors: | gegebenenfalls relevant (1) |
Auswertekategorien:
- Empfindlichkeiten/Wirkungen (14)
- Regenerationsfähigkeit (0)
- Prognosemethoden (0)
- Relevanzschwelle (0)
- Erheblichkeitsschwelle (4)
Datensatz:
< zurück
1 - 5 von 18
weiter >
1. Empfindlichkeiten/Wirkungen
1.01 BearbeiterInnen FFH-VP-Info (siehe Impressum) (o. J.)
Eine anlagebedingte Barrierewirkung kann einerseits durch technische Bauwerke bzw. anlagebezogene Bestandteile eines Vorhabens, andererseits aber auch durch veränderte Landschaftsstrukturen hervorgerufen werden. Zusätzlich können andere Faktoren (s. unter Wirkfaktorgruppe 5) zu Störung bzw. Meidung bestimmter Bereiche beitragen und somit eine Barrierewirkung herbeiführen oder verstärken. Barrierewirkungen führen zu Lebensraumzerschneidung und somit u. a. zur Beeinträchtigung bzw. zur Trennung von räumlich-funktionalen Beziehungen (z. B. zwischen Brut- und Nahrungshabitat) sowie zu Verlagerungen von Teilhabitaten bis hin zur Aufgabe der betroffenen Brut- und Rastgebiete. Die im Wesentlichen auf visuelle Störwirkungen zurückzuführenden Empfindlichkeiten und Wirkzusammenhänge, u. a. auch betriebsbedingte Störreize durch Rotorbewegungen von WEA, werden unter Wirkfaktor 5-2 beschrieben.
Weiterhin können bauliche Anlagen wie Windparks oder Freileitungen auf Flugwegen v. a. während des Zuges als Hindernisse wirken, die über- bzw. umflogen werden müssen (Hoerschelmann et al. 1988, Rodts 1999, Isselbächer & Isselbächer 2001, Desholm 2003, Horch & Keller 2005, Masden et al. 2009, Aumüller et al. 2013). Auch Funktürme werden bei guter Sicht weiträumig umflogen (Schmiedel 2001). An WEA sind Ausweichflüge für 81 Vogelarten nachgewiesen (Hötker et al. 2004, Hötker et al. 2005). Je nach Anzahl, Ausrichtung zur Hauptzugrichtung und Seitenlänge der Hindernisse ergeben sich durch die Ausweichbewegungen entlang des Zugweges mehr oder weniger lange Umwege und dadurch Energiemehrkosten für die ziehenden Vogelindividuen. Zucco & Merck (2004) zitieren Beobachtungen von Pettersson (2003), wonach WEA im Herbst und nachts am weiträumigsten umflogen werden. Umfliegungen oder sogar Umkehrreaktionen während des Zuges können jedoch auch durch natürliche Ursachen wie z. B. Schauergebiete ausgelöst werden und gehören damit prinzipiell zum normalen Verhaltensrepertoir von Zugvögeln. Nach Berthold (2000) bewegen sich Nonstop-Flugleistungen - auch von Singvögeln - mehrheitlich in Größenordnungen über 1.000 km. Zugverlängerungen durch Umfliegungen von Hindernissen sind vor dem Hintergrund bekannter Flugleistungen von Zugvögeln zumindest an Land zu relativieren und im Regelfall als vernachlässigbar einzustufen.
Im Offshore-Bereich stellen sich die Verhältnisse vor dem Hintergrund des derzeit sehr intensiv geplanten und durchgeführten Ausbaus der Windenergienutzung möglicherweise gravierender dar, insbesondere wenn die Auswirkungen von WEA kumulativ entlang von Zugrouten betrachtet werden (Masden et al. 2009, Poot et al. 2011). Barriereeffekte können für Landvögel im Offshore-Bereich von essentieller Bedeutung sein, da sich insbesondere bei widrigen Wetterbedingungen (starke Winde aus ggf. ungünstiger Richtung, die Orientierung erschwerende Niederschläge, geringe Sichtweiten und hohe Bedeckungsgrade) keine Rastmöglichkeit ergibt und eine Umkehr je nach Entfernung zur Küste mit enormen Energieverlusten verbunden ist. Bloßes Umfliegen eines einzelnen Windparks ist mit relativ geringen Energieverlusten verbunden, die kumulative Wirkung vieler Windparks kann nach Aumüller et al. (2013b) die Vögel aber ggf. derart schwächen, dass sie schlimmstenfalls die Küste nicht mehr erreichen oder etwa zu wenig Energie für eine erfolgreiche Brut oder Überwinterung haben.
Eine Barrierewirkung ist auch dann als beeinträchtigend zu bewerten, wenn es sich um regelmäßig (z. B. täglich) erforderliche Ausweichflüge z. B. zwischen Brutplatz und Nahrungshabitat (z. B. Weiß- oder Schwarzstorch) oder zwischen Schlafplatz und Nahrungshabitat (z. B. Gänse, Schwäne oder Kraniche in Rastgebieten) handelt, die zudem häufig in niedrigeren Höhen durchgeführt werden. Regelmäßig genutzte Korridore zu Schlafplätzen stellen besonders empfindliche Funktionsräume dar (vgl. z. B. auch Landesamt für Natur und Umwelt des Landes Schleswig-Holstein 2008, NLT 2013).
Die anlagebedingte Mortalität / Tötung von Vögeln ist regelmäßig auf eine Kollision von Individuen mit baulichen Projektbestandteilen zurückzuführen. Vielfach können Hindernisse, insbesondere in der Nacht, bei Nebel, starkem Regen oder Schneefall und bei schnellen Fluchtreaktionen, nicht rechtzeitig erkannt werden. Zum Teil wird das Risiko durch Beleuchtungseinrichtungen noch verstärkt, da Vögel nachts auf helle Objekte zusteuern bzw. davon irritiert werden (vgl. Wirkfaktor 5-3) (Drewitt & Langston 2008, European Commission 2011, Furness et al. 2013). Die Kollisionsrisiken sind einerseits artspezifisch und andererseits abhängig vom Projekttyp sowie den konkreten räumlichen Konstellationen (s. nachfolgende Datensätze).
Ein häufig nicht erkanntes bzw. unterschätztes Mortalitätsrisiko stellen - zumeist für Jungvögel - fallenartig wirkende Anlagen dar, wie z. B. steilwandige Gräben, Gruben, Schächte oder Schornsteine, aus denen die Opfer nicht mehr entkommen können und darin verenden. Als Sonderfall ist zudem der Stromschlag an Mittelspannungsleitungen zu erwähnen.
Barrierewirkungen und Mortalität können - abhängig vom Umfang - zu Verlust von Teilhabitaten, Verringerung des Bruterfolgs, zu Brutpaarverlust, Bestandsrückgang oder Beeinträchtigung bzw. zum Erlöschen lokaler (Teil-)Populationen führen.
Für die Mortalität von Vögeln ist v. a. die Kollision an A: Windenergieanlagen, B: Energiefreileitungen, C: Türmen/Sendemasten, D: Brücken/Tragseilen, E: Glasscheiben und F: Zäunen relevant. Die nachfolgenden Datensätze sind - sofern für die Art relevant - nach diesen Anlagentypen gegliedert. Weitere anlagebedingte Tötungsrisiken gehen von Gezeiten- und Wellenkraftwerken für tauchende Seevogelarten aus (Grecian et al. 2010, Furness et al. 2012, Savidge et al. 2014).
Die Mortalität an Leuchttürmen wird unter Wirkfaktor 5-3 behandelt.
Eine umfangreiche, kommentierte und mit Index versehene Bibliographie zur Mortalität von Vögeln an Freileitungen, Drähten, Türmen, Windrädern, Zäunen und anderen baulichen Strukturen wurde von der California Energy Commission (1995) herausgegeben, die in einer kommentierten Online-Datenbank weitergeführt wurde. Diese findet sich unter:
http://www.energy.ca.gov/research/environmental/avian_bibliography/.
Vgl. z. B. auch Übersichten bei Erickson et al. (2005), Drewitt & Langston (2008) bzw. Langston et al. (2013).
1.02 BearbeiterInnen FFH-VP-Info (siehe Impressum) (o. J.)
Die Relevanzeinstufung für die Art erfolgte aufgrund der "geringen" vorhabentypspezifischen Mortalitätsgefährdung durch Kollision an Windenergieanlagen sowie durch Stromtod als Jahresvogel (Bernotat & Dierschke 2016; siehe unten stehende Datensätze).
1.03 BearbeiterInnen FFH-VP-Info (siehe Impressum) (o. J.)
A: Mortalität an Windenergieanlagen
Windenergieanlagen führen je nach räumlicher Lage und Exposition und auch in Abhängigkeit vom Anlagentyp (z. B. Beton- oder Gittermasten) zu Vogelschlagverlusten. Es gibt inzwischen europaweit genügend dokumentierte Fälle, die belegen, dass von Windenergieanlagen eine tödliche Gefahr für nahezu alle Vogelarten ausgeht, wobei hohe artspezifische Unterschiede des Risikos festgestellt wurden (vgl. z. B. Dürr 2004, Garthe & Hüppop 2004, Hötker et al. 2005, Hötker 2006, Krijgsveld et al. 2009, Furness et al. 2013, Langgemach & Dürr 2013, Mannerla 2013).
Die Mortalität durch Kollisionen kann anlage- und betriebsbedingt auftreten, entsprechend der Hinderniswirkung der Masten als bauliche Anlagen und der im Betrieb beweglichen Rotoren. Zum Teil reichen bereits die zwischen den Rotorblättern entstehenden Turbulenzen, um einen Vogel im Flug zu beeinträchtigen (vgl. z. B. Rodts 1999). An Gittermasten wird von Akkermann (1999) ein größeres Kollisionsrisiko als an glatten Masten angenommen, da sie zusätzliche Sitzwarten anbieten. Verschiedene Studien konnten diesen Zusammenhang in vergleichenden Untersuchungen jedoch nicht bestätigen (Barrios & Rodriguez 2004, Hötker 2008, Powlesland 2009). Trotzdem empfiehlt die Europäische Kommission (European Commission 2011: 84) die Vermeidung von Gittermasten.
Während des Zuges kann das Tötungsrisiko bei Bildung niedriger Wolkenschichten und Nebel steil ansteigen, wenn die Vögel größere Zughöhen verlassen. Zudem werden Zugvögel nachts von der Beleuchtung der Anlagen angelockt und können damit in den Rotorbereich gelangen. In der überwiegenden Zahl der von den Autoren ausgewerteten Studien wurden Kollisionsraten zwischen 0 und mehr als 30 Vögeln pro WEA und Jahr ermittelt (Hötker et al. 2005). Hier ist zu berücksichtigen, dass dies aus methodischen Gründen nur eine Teilmenge der Opferzahl darstellt; Füchse, Rabenvögel und andere Aasfresser sammeln Anflugopfer ab, bevor diese gefunden werden können (Dürr 2004).
Grundsätzlich verringert sich das Kollisionsrisiko bei Rückenwind, da Vögel dann deutlich höher ziehen und damit die Anlagen überfliegen. Generell spielt dabei aber auch die Windstärke eine entscheidende Rolle, da sie die Manövrierfähigkeit und das rechtzeitige Erkennen von Hindernissen direkt beeinflusst. Da nachtziehende Vögel höher ziehen als Tagzieher, ist deren Kollisionsrisiko möglicherweise geringer. Bruderer & Liechti (2004) quantifizieren für Radardaten aus der Schweiz und Süddeutschland, dass im Mittel 15-25 % des Nachtzuges in den untersten 200 m über dem Boden stattfinden. Für den Tagzug deuten sich höhere Anteile der Zugaktivitäten im Bereich unter 200 m an. Besonders in Schlechtwetterphasen oder bei Gegenwind vermuten die Autoren einen großen Anteil des Vogelzugs im bodennahen Bereich (unter 200 m), womit sich das Kollisionsrisiko deutlich erhöht. Zusätzlich wird auf mögliche, topologisch bedingte "erhebliche lokale Konzentrationen des Zuges" (Bruderer & Liechti 2004) hingewiesen, die ebenfalls das Kollisionsrisiko erhöhen können (s. a. Barrios & Rodriguez 2004, Drewitt & Langston 2008, Krijgsveld et al. 2009).
Eine vom BfN beauftragte Studie zur Wirksamkeit von Maßnahmen gegen Vogelkollisionen an Windenergieanlagen (Blew et al. 2018) gibt einen Überblick zum derzeitigen Wissensstand. Im Rahmen dieses Forschungs- und Entwicklungsvorhabens werden praxistaugliche, mehr oder weniger wirksame Vermeidungsmaßnahmen von derzeit für die Anwendung in der Praxis nicht oder nur sehr eingeschränkt geeigneten Maßnahmen unterschieden.
Es ist noch nicht konkret abschätzbar, inwieweit die mittlerweile bei modernen Anlagen erreichten Anlagenhöhen von 200 m und eine von den Rotorblättern überstrichene Fläche von mehr als 1 ha zu weiter steigenden Kollisionsrisiken führen. Hötker (2006) nimmt jedenfalls eine verstärkte Kollisionsgefahr für Vögel in Folge des Repowering von Windenergieanlagen an.
Differenzierte Ausführungen zur Mortalität von Vögeln an Windenergieanlagen, eine Zusammenstellung verschiedener Fakten und Beispiele sowie Hinweise für die Planung finden sich z. B. bei:
Bundesamt für Naturschutz (2000), Isselbächer & Isselbächer (2001a,b), Bergen (2001), Erickson et al. (2001), Johnson et al. (2002), Breuer (2002), Richarz (2002), Steffen (2002), Reichenbach (2003, 2004a,b,c), Barrios & Rodríguez (2004), Dürr (2004), Hötker et al. (2005), Traxler et al. (2004), Deutscher Naturschutzring (2005), Horch & Keller (2005), Percival (2005), Dürr & Langgemach (2006), Länderarbeitsgemeinschaft der Vogelschutzwarten (LAG-VSW) (2007), Drewitt & Langston (2008), LANU SH (2008), Nicolai et al. (2009), Bright et al. (2009), European Commission (2011), Aumüller et al. (2011), Richarz (2011b), Stübing (2011), Bayerisches Staatsministerium des Innern et al. (2011), Ministerium für Energie, Infrastruktur und Landesentwicklung MV (2012), HMUELV & HMWVL HE (2012), Richarz et al. (2012), Illner (2012), Bellebaum et al. (2012, 2013), Langston et al. (2013), LUBW (2013), MKULNV & LANUV NRW (2013), MELUR & LLUR SH (2013), Hötker (2013), Jaehne (2013), Niedersächsischer Landkreistag (2014), Ministerium für Umwelt, Gesundheit und Verbraucherschutz BB (2014), Dorka et al. (2014), Hötker et al. (2014), Bulling et al. (2015), Länderarbeitsgemeinschaft der Vogelschutzwarten (LAG VSW) (2015), Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz NRW (2015), Ministerium für Ländlichen Raum und Verbraucherschutz BW (2015), LUBW (2015), Reichenbach et al. (2015), Niedersächsisches Ministerium für Umwelt, Energie und Klimaschutz (2016), Grünkorn et al. (2016), Bernotat & Dierschke (2016), Richarz (2016), MELUR & LLUR SH (2016), MULNV NRW & LANUV NRW (2017), LAG-VSW (2017), Hötker (2017), de Lucas & Perrow (2017), Smales (2017), Blew et al. (2018), Werner et al. (2019), Ammermann et al. (2020), HMUKLV & HMWEVW (2020), UM BW & LUBW (2021), LfU BY (2021), Langgemach & Dürr (2021) oder Bernotat & Dierschke (2021, Teil II.3).
Sammelbände: Bundesamt für Naturschutz (2000), TU Berlin (2002), BUND (2004), Hötker (Hrsg. 2008).
Bibliographien: Schubert (2000), Bundesamt für Naturschutz (2006).
Eine Literaturdatenbank mit verschiedenen Abfrageoptionen bietet das Michael-Otto-Institut des NABU (2004) unter: http://bergenhusen.nabu.de.
Im Rahmen der Arbeitsteilung innerhalb der Länderarbeitsgemeinschaft der deutschen Vogelschutzwarten (LAG-VSW) dokumentiert die Staatliche Vogelschutzwarte in Brandenburg datenbankgestützt bundesweit alle Meldungen von an WEA verunglückten Vögeln und Fledermäusen, abrufbar unter: http://www.mugv.brandenburg.de/cms/detail.php/bb2.c.451792.de.
Besondere Risiken Offshore:
Das Kollisionsrisiko über See ist u. a. wegen der schlechteren akustischen Wahrnehmbarkeit und der größeren Höhe der Anlagen sowie geringeren Flughöhen - insbesondere bei Gegenwind - deutlich größer einzuschätzen als über Land (z. B. Exo et al. 2002). Inwieweit die akustische Wahrnehmbarkeit tatsächlich Kollisionen verhindern kann, ist nicht bekannt. Ein weiteres Problem der Offshore-Windenergieanlagen ergibt sich aus deren nächtlicher Beleuchtung. Diese kann viele nachts ziehende (Land-)Vögel bei Nebel- und Wolkenbildung zum anhaltenden Umkreisen der Anlagen veranlassen, was die Wahrscheinlichkeit erhöht, zu kollidieren (Aumüller et al. 2011, Hill et al. 2014) oder aufgrund von Erschöpfung zu ertrinken. Anlockwirkungen von Licht und dadurch ausgelöste Erschöpfungsflüge werden unter Wirkfaktor 5-3 behandelt.
Hüppop et al. (2006) stellten bei Radaruntersuchungen in der Deutschen Bucht fest, dass fast die Hälfte der bis in eine Höhe von 1,5 km erfassten Vögel in "gefährlichen" Höhen bis 200 m fliegen (almost half of the birds fly at "dangerous" altitudes). Diese Aussage behält je nach Jahreszeit und Witterung generell weiterhin ihre Richtigkeit, nachdem die Erfassung am gleichen Standort auf insgesamt neun Jahre ausgedehnt wurde (Hill et al. 2014). Tagsüber zeigten Sichtbeobachtungen von Zugvögeln offshore meist Flughöhen von deutlich unter 50 m (Hill et al. 2014), wobei höher ziehende Tiere durch Sichtbeobachter übersehen werden können. Weitere Aussagen zur Flughöhe von Zugvögeln finden sich bei Krijgsveld et al. (2011), Johnston et al. (2014) sowie bei Bernotat & Dierschke (2021, Teil II.4), die daher bei einem sehr hohem Zugaufkommen (z. B. sog. Massenzugereignissen) im Risikobereich der Rotoren zeitlich begrenzte Abschaltungen fordern.
Insbesondere Nachtzieher sind unter speziellen Wetterverhältnissen (z. B. Nebel, komplette Bedeckung, starke Winde) großen Kollisionsverlusten an Offshore-Bauwerken ausgesetzt. Besondere Gefährdungen ergeben sich, wenn zuvor gute Zugbedingungen mit Rückenwind herrschten, massenhaft Landvögel den Zug über See angetreten hatten und das Wetter sich dann rasch und drastisch verschlechtert (Hüppop et al. 2009, Ballasus et al. 2009, Bellebaum et al. 2010, Aumüller et al. 2011, Hill et al. 2014).
Spezielle Informationen zum Themenfeld der Offshore-Windenergieanlagen finden sich z. B. in:
Guillemette et al. (1998, 1999), Percival (2001), Exo et al. (2002), Dierschke (2003), Dierschke et al. (2003), Hüppop & Garthe (2003), Garthe & Hüppop (2004), Köppel et al. (2004), Hüppop et al. (2005a,b,c), Pettersson (2005), Merck (2006), Hüppop et al. (2006), Bellebaum et al. (2008), Neumann et al. (2009), Hüppop et al. (2009), Ballasus et al. (2009), Bellebaum et al. (2010), Mendel & Garthe (2010), Kubetzki et al. (2011), Aumüller et al. (2011), Krijgsveld et al. (2011), Hill et al. (2014), Masden & Cook (2016), Skov et al. (2016), Cook et al. (2018), Busch & Garthe (2018), Kleyheeg-Hartman et al. (2018), Skov et al. (2018), Welcker & Vilela (2018), Bruderer et al. (2018), Hüppop et al. (2019b), King (2019), Thaxter & Perrow (2019), Cook & Masden (2019), Molis et al. (2019), Harwood & Perrow (2019), Aumüller et al. (2019), Welcker & Vilela (2019), Welcker (2019), Kulik et al. (2020) oder Bernotat & Dierschke (2021, Teil II.4).
1.04 BearbeiterInnen FFH-VP-Info (siehe Impressum) (o. J.)
In vielen Untersuchungen hat sich gezeigt, dass neben anderen Arten Greifvögel überproportional häufig von Mortalität an WEA betroffen sind (vgl. z. B. Zusammenstellungen bei Hötker et al. 2004 oder Reichenbach 2003).
'Die Untersuchungen an verschiedenen Windparks in den USA, aber auch Beobachtungen in Deutschland deuten darauf hin, dass es zu vielen Opfern unter den Greifvögeln kommt, weil diese durch die Umgebung der Windkraftanlagen angelockt werden.' Dies wird damit begründet, dass die Hauptnahrung vieler Greifvögel Kleinsäuger sind, die in den offenen Bereichen zum einen meist ohnehin häufig vorkommen und zum anderen, dass sich die Mäusedichte durch die Entstehung von kleinen Brachflächen noch erhöht. Auch könnten durch die Anlage Ansitzwarten (z. B. Zäune) entstehen, die die Vögel zusätzlich anlocken (Hötker et al. 2004:50).
Ferner dürfte die bevorzugte Flughöhe der jeweiligen Vogelarten eine Rolle spielen. Denn im Verhältnis zur Populationsgröße sind Seeadler und Rotmilan bei weitem die am stärksten betroffenen Vogelarten. Deren Suchflüge finden offenbar zum großen Teil in dem Höhenbereich statt, der von den Rotoren hauptsächlich betroffen ist (50-150 m).
Weitere Quellen zur Artengruppe Greifvögel: Handke (2000), Erickson et al. (2001), Dürr (2004), Dürr & Langgemach (2006).
1.05 BearbeiterInnen FFH-VP-Info (siehe Impressum) (o. J.)
Spezifische Situation von Greifvögeln nach Dürr (2004), Dürr & Langgemach (2006)
Im Rahmen der datenbankgestützten bundesweiten Auswertung aller Meldungen von an WEA verunglückten Vögeln und Fledermäusen kommt der Autor u. a. zu folgenden Ergebnissen:
Greifvögel rangieren an der Spitze aller betroffenen Vogelarten und stellen allein 40 % aller gefundenen Vögel dar (Stand: März 2004). Dies ist ein völlig unerwartetes Resultat, denn Greifvögel sind nicht nur durch die Morphologie des Auges zu sehr gutem Sehen befähigt, sondern haben auch einen relativ großen Bereich binokularen Sehens. Trotzdem sind sie nicht mehr in der Lage, den Verlauf der drehenden Rotoren (die an ihrer Spitze Geschwindigkeiten bis zu 180 km/h erreichen) genau einschätzen zu können.
Bei der Interpretation der hohen Greifvogelverluste wiesen Dürr & Langgemach (2006) auf bisher sechs erkennbare Aspekte hin:
1. Greifvögel legen bei der Nahrungssuche, insbesondere in der Zeit der Jungenaufzucht, regelmäßig größere Strecken fliegend zurück.
2. Beim Passieren von WEA bei diesen Flügen wird die Umlaufgeschwindigkeit der Rotorspitzen nicht richtig eingeschätzt, da der Gesamteindruck eine relativ langsame Bewegung vortäuscht.
3. Unter Umständen erfolgt beim regelmäßigen Vorbeifliegen in geringer Entfernung Gewöhnung, die dann bei starkem Wind durch höhere Rotorgeschwindigkeit und Abdriften des Vogels das Kollisionsrisiko verstärkt.
4. Einige Arten scheinen durch ein attraktives Nahrungsangebot im Bereich von WEA angelockt zu werden. Nicht selten sind die Brachen am Mastfuß die einzigen kleinsäugerreichen Flächen inmitten weiter Ackerlandschaft. Aber auch Kadaver unter den Anlagen können Greifvögel anlocken.
5. Beim Fokussieren der Beute nehmen Greifvögel die Rotoren nicht wahr. Dieser Faktor erklärt z. B. auch die große Mortalität von Bussarden an Straßen.
6. WEA werden als Sitzwarten angeflogen. Vor allem bei Gittermasten, wie sie in den USA eingesetzt werden, führt dies zu sehr hohen Verlusten (u. a. Erickson et al. 2001). In Deutschland gibt es bislang nur sehr wenige WEA in Gittermastbauweise, da diese in der Regel erst ab Bauhöhen >150 m zum Einsatz kommt, allerdings wird die Gondel bisweilen als Sitzwarte genutzt.
Unter den Greifvögeln dominieren Rotmilan und Mäusebussard, gefolgt von Seeadler und Turmfalke. Der Rotmilan wird damit im Vergleich zum absoluten Bestand häufiger als jede andere Vogelart an WEA gefunden! Gegenüber dem vergleichbaren Mäusebussard, der in Deutschland etwa siebenmal so häufig ist (Bauer et al. 2004), liegt die Zahl der Verluste nahezu doppelt so hoch. Der ohnehin große Anteil anthropogen verursachter Verluste beim Rotmilan (Langgemach et al. im Druck) wird dadurch um eine weitere Gefährdungsursache ergänzt. In Brandenburg stieg durch die Erfassung der Anflugopfer an WEA allein im Zeitraum 2001 bis 2003 die Zahl der alljährlich an der Staatlichen Vogelschutzwarte registrierten verunglückten Rotmilane um jeweils zwei Drittel an.
Allein 19 Rotmilane (47,5 %) wurden als Zufallsfunde gemeldet, die auf Stichprobenkontrollen an WEA zurückgehen. Das lässt eine besonders hohe Dunkelziffer erwarten. Besorgniserregend ist außerdem, dass sich unter 27 Rotmilanen, deren Alter bestimmt wurde, nur ein einziger Jungvogel befand. Der wichtigste Teil der Population, nämlich der aktiv an der Reproduktion beteiligte, ist damit besonders betroffen. Bei Verlusten während der Brut- und Aufzuchtszeit kommt es zudem regelmäßig auch zu Brutverlusten. Von 27 Altvögeln verunglückten allein 20 im Zeitraum zwischen Revierbesetzung und Ende der Brutzeit (März bis Juli) und nur 6 im Anschluss an die Brutzeit (August bis September).
Windparks in unmittelbarer Nähe von Hausmülldeponien wirken sich konfliktsteigernd aus, da sie großräumig von diversen Milanpaaren und von nichtbrütenden Vögeln aufgesucht werden.
Die einzige Alternative, Rotmilane vor WEA wirksam zu schützen, scheint bisher die Schaffung großer Freiräume zu sein, in denen keine WEA errichtet werden. Beobachtungen des Verhaltens ziehender Rotmilane deuten an, dass zumindest diese in den meisten Fällen WEA so weiträumig meiden, dass sie offenbar nur sehr selten an ihnen verunglücken (Brauneis 1999, eigene Beobachtungen). Auch aus dem spanischen Winterquartier wurden bislang keine Todfunde gemeldet (Montes & Jaque 1995, Lekuona 2001).
Datensatz: < zurück 1 - 5 von 18 weiter >
Reports: aktueller Wirkfaktor aktuelle Wirkfaktorengruppe alle Wirkfaktoren
Qualifizierung der Quellen für Vogelarten
A | verallgemeinerbarer, in der Literatur dokumentierter Nachweis für diese spezielle Art |
B | in der Literatur dokumentierter Nachweis für diese spezielle Art, aber möglicherweise Ausnahmefall |
C | in der Literatur dokumentierter Nachweis für verwandte Arten bzw. andere Arten dieser Artengruppe, der als übertragbar eingestuft wird |
D | in der Literatur dokumentierter Hinweis für diese spezielle Art oder verwandte Arten bzw. andere Arten dieser Artengruppe |
E | eigene Einschätzung oder Aussage Dritter, ohne in der Literatur dokumentierten Nachweis/Hinweis (Experteneinschätzung) |
F | keine Literatur verfügbar / Auswertung bzw. Einschätzung mit aktuellem Bearbeitungsstand noch nicht erfolgt |
Legende: Bearbeitungsstand zum Bereich "Beeinträchtigungen"
- | bislang noch nicht bearbeitet |
I | derzeit nur Einschätzungen zur Relevanz der Wirkfaktoren vorhanden |
II | zudem Detaildaten zur Auswertekategorie "1. Empfindlichkeiten/Wirkungen" vorhanden |
III | zudem Detaildaten zu den weiteren Auswertekategorien "2. bis 5." vorhanden |